Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.479
Filtrar
1.
Discov Oncol ; 15(1): 97, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565713

RESUMO

BACKGROUND AND PURPOSE: The enzyme methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in directing folate species towards nucleotide synthesis or DNA methylation. The MTHFR polymorphisms C677T and A1298C have been linked to cancer susceptibility, but the evidence supporting this association has been equivocal. To investigate the individual and joint associations between MTHFR C677T, A1298C, and digestive system cancer in a Chinese hypertensive population, we conducted a population-based case-control study involving 751 digestive system cancer cases and one-to-one matched controls from the China H-type Hypertension Registry Study (CHHRS). METHODS: We utilized the conditional logistic regression model to evaluate multivariate odds ratios (ORs) and 95% confidence intervals (CIs) of digestive system cancer. RESULTS: The analysis revealed a significantly lower risk of digestive system cancer in individuals with the CT genotype (adjusted OR: 0.71; 95% CI 0.52, 0.97; P = 0.034) and TT genotype (adjusted OR: 0.57; 95% CI 0.40, 0.82; P = 0.003; P for trend = 0.003) compared to those with the 677CC genotype. Although A1298C did not show a measurable association with digestive system cancer risk, further stratification of 677CT genotype carriers by A1298C homozygotes (AA) and heterozygotes (AC) revealed a distinct trend within these subgroups. CONCLUSION: These findings indicate a potential protective effect against digestive system cancer associated with the T allele of MTHFR C677T. Moreover, we observed that the presence of different combinations of MTHFR polymorphisms may contribute to varying susceptibilities to digestive system cancer.

4.
Transl Neurosci ; 15(1): 20220337, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38584670

RESUMO

Background: Forkhead box P3 (FOXP3) plays a critical role in the pathogenesis of autoimmune disorders. In the present study, we genotyped three single-nucleotide polymorphisms, namely, rs2232365, rs3761548, and rs3761549, to determine the relationship between FOXP3 polymorphisms and neuromyelitis optica spectrum disorder (NMOSD) susceptibility among the Northern Chinese Han population. Materials and methods: We genotyped single nucleotide polymorphisms at loci of the FOXP3 gene (rs2232365, rs3761548, and rs3761549136) in 136 NMOSD patients and 224 healthy subjects using the multiplex SNaPshot technique. Allele, genotype, and haplotype frequencies were compared. qPCR was used to analyze the mRNA expression levels of FOXP3 in the peripheral blood mononuclear cells of 63 NMOSD patients and 35 healthy subjects. Non-parametric tests were used to test the FOXP3 mRNA expression across the different groups. Results: The minor allele frequency (MAF) of G in rs2232365 was markedly lower in the NMOSD group than in the control group (odds ratio [OR] = 0.57, 95% confidence interval [95% CI]: 0.41-0.79, p = 0.001). Using genetic (codominant, dominant, and recessive) models and performing haplotype analyses, the MAF of G in rs2232365 was shown to be associated with protection against NMOSD in this population. Furthermore, haplotype analysis revealed that the haplotype GCT and the rs2232365, rs3761548, and rs3761549 alleles predicted protection against NMOSD (OR = 0.63, 95% CI = 0.41-0.97, p = 0.038). The proportions of the three genotypes of rs2232365 (p = 0.001) were not significantly different between the moderate-to-severe (Expanded Disability Status Scale (EDSS) ≥ 3 points) and mild (EDSS < 3 points) groups. Evidently, the proportion of patients with the AA genotype (64.3%) among the rs2232365 patients was significantly greater in the moderate-to-severe group than in the mild group (36.4%). However, the proportion of patients with the GG genotype (15.2%) among the rs2232365 patients was significantly greater in the mild group than in the moderate-to-severe group (2.9%). The mRNA expression of FOXP3 was markedly greater in the NMOSD group than in the control group (p = 0.001). Nevertheless, acute non-treatment patients exhibited lower FOXP3 mRNA expression than healthy controls and patients in the remission group (p = 0.004 and 0.007, respectively). Conclusion: FOXP3 polymorphisms and haplotypes are related to NMOSD susceptibility among the Han Chinese population. The minor allele G of FOXP3 rs2232365 and the haplotype GCT are associated with protection against NMOSD. The GG genotype may decrease the severity of NMOSD, whereas the AA genotype is related to moderate-to-severe NMOSD. FOXP3 mRNA expression is greater in patients with NMOSD than in healthy controls. However, it is decreased in acute non-treatment patients compared with healthy controls.

6.
Biochem Biophys Res Commun ; 712-713: 149946, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38643717

RESUMO

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbß3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.

7.
Artigo em Chinês | MEDLINE | ID: mdl-38563181

RESUMO

Noise-induced hearing loss(NIHL) is an acquired sensorineural hearing loss induced by long-term noise exposure. The susceptibility of exposed people may vary even in the same noise environment. With the development of sequencing techniques, genes related to oxidative stress, immunoinflammatory, ion homeostasis, energy metabolism, DNA damage repair and other mechanisms in NIHL have been reported continuously. And some genes may interact with noise exposure indexes. In this article, population studies on NIHL-related gene polymorphisms and gene-environment interactions in the past 20 years are reviewed, aimed to providing evidence for the construction of NIHL-related risk prediction models and the formulation of individualized interventions.


Assuntos
Perda Auditiva Provocada por Ruído , Ruído Ocupacional , Humanos , Estudos de Casos e Controles , China/epidemiologia , Predisposição Genética para Doença , Genótipo , Perda Auditiva Provocada por Ruído/genética , Polimorfismo de Nucleotídeo Único
8.
Proc Natl Acad Sci U S A ; 121(18): e2320590121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621118

RESUMO

Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.


Assuntos
Mamíferos , Marsupiais , Animais , Camundongos , Austrália , Dinâmica Populacional , Genótipo , Heterozigoto , Variação Genética , Genética Populacional
9.
Appl Clin Genet ; 17: 33-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567200

RESUMO

Tuberculosis remains a global health concern, with substantial mortality rates worldwide. Genetic factors play a significant role in influencing susceptibility to tuberculosis. This review examines the current progress in studying polymorphisms within immune genes associated with tuberculosis susceptibility, focusing on African populations. The roles of various proteins, including Toll-like receptors, Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Non-Integrin, vitamin D nuclear receptor, soluble C-type lectins such as surfactant proteins A and D, C-type Lectin Domain Family 4 Member E, and mannose-binding lectin, phagocyte cytokines such as Interleukin-1, Interleukin-6, Interleukin-10, Interleukin-12, and Interleukin-18, and chemokines such as Interleukin-8, monocyte chemoattractant protein 1, Regulated upon activation, normal T-cell expressed and secreted are explored in the context of tuberculosis susceptibility. We also address the potential impact of genetic variants on protein functions, as well as how these findings align with the genetic polymorphisms not associated with tuberculosis. Functional studies in model systems provide insights into the intricate host-pathogen interactions and susceptibility mechanisms. Despite progress, gaps in knowledge remain, highlighting the need for further investigations. This review emphasizes the association of Single Nucleotide Polymorphisms with diverse aspects of tuberculosis pathogenesis, including disease detection and Mycobacterium tuberculosis infection.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38571313

RESUMO

CONTEXT: Vitamin D status has been associated with risk of type 2 diabetes (T2D), but evidence is scarce regarding whether such relation differs by glycemic status. OBJECTIVE: To prospectively investigate the association between serum 25-hydroxyvitamin D [25(OH)D] and risk of incident T2D across the glycemic spectrum and the modification effect of genetic variants in vitamin D receptor (VDR). METHODS: This prospective study included 379,699 participants without T2D at baseline from the UK Biobank. Analyses were performed according to glycemic status and HbA1c levels. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% CIs. RESULTS: During a median of 14.1 years of follow-up, 6,315 participants with normoglycemia and 9,085 prediabetes patients developed T2D. Compared to individuals with 25(OH)D <25 nmol/L, the multivariable-adjusted hazard ratios (95% CIs) of incident T2D for those with 25(OH)D ≥75 nmol/L was 0.62 (0.56, 0.70) among the normoglycemia and 0.64 (0.58, 0.70) among the prediabetes. A significant interaction was observed between 25(OH)D and VDR polymorphisms among participants with prediabetes (Pinteraction=0.017), whereby the reduced HR of T2D associated with higher 25(OH)D was more prominent in those carrying T allele of rs1544410. Triglycerides levels mediated 26% and 34% of the association between serum 25(OH)D and incident T2D among participants with normoglycemia and prediabetes. CONCLUSIONS: Higher serum 25(OH)D concentrations were associated with lower T2D risk across the glycemic spectrum below the threshold for diabetes, and the relations in prediabetes were modified by VDR polymorphisms. Improving lipid profile, mainly triglycerides, accounted for part of the favorable associations.

11.
Cancer Med ; 13(7): e7166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572926

RESUMO

BACKGROUND: Studies have shown that some single nucleotide polymorphisms (SNPs) could serve as excellent markers in foretelling the treatment outcome of interferon (IFN) in myeloproliferative neoplasms (MPN). However, most work originated from western countries, and data from different ethnic populations have been lacking. METHODS: To gain insights, targeted sequencing was performed to detect myeloid-associated mutations and SNPs in eight loci across three genes (IFNL4, IFN-γ, and inosine triphosphate pyrophosphatase [ITPA]) to explore their predictive roles in our cohort of 21 ropeginterferon alpha-2b (ROPEG)-treated MPN patients, among whom real-time quantitative PCR was also performed periodically to monitor the JAK2V617F allele burden in 19 JAK2V617F-mutated cases. RESULTS: ELN response criteria were adopted to designate patients as good responders if they achieved complete hematological responses (CHR) within 1 year (CHR1) or attained major molecular responses (MMR), which occurred in 70% and 45% of the patients, respectively. IFNL4 and IFN-γ gene SNPs were infrequent in our population and were thus excluded from further analysis. Two ITPA SNPs rs6051702 A>C and rs1127354 C>A were associated with an inferior CHR1 rate and MMR rate, respectively. The former seemed to be linked to grade 2 or worse hepatotoxicity as well, although the comparison was of borderline significance only (50%, vs. 6.7% in those with common haplotype, p = 0.053). Twelve patients harbored 19 additional somatic mutations in 12 genes, but the trajectory of these mutations varied considerably and was not predictive of any response. CONCLUSIONS: Overall, this study provided valuable information on the ethnics- and genetics-based algorithm in the treatment of MPN.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Resultado do Tratamento , Haplótipos , Células Germinativas , Interferon lambda , Interleucinas/genética
12.
Mol Nutr Food Res ; : e2400087, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581346

RESUMO

SCOPE: Dietary isothiocyanate (ITC) exposure from cruciferous vegetable (CV) intake may improve non-muscle invasive bladder cancer (NMIBC) prognosis. This study aims to investigate whether genetic variations in key ITC-metabolizing/functioning genes modify the associations between dietary ITC exposure and NMIBC prognosis outcomes. METHODS AND RESULTS: In the Bladder Cancer Epidemiology, Wellness, and Lifestyle Study (Be-Well Study), a prospective cohort of 1472 incident NMIBC patients, dietary ITC exposure is assessed by self-reported CV intake and measured in plasma ITC-albumin adducts. Using Cox proportional hazards regression models, stratified by single nucleotide polymorphisms (SNPs) in nine key ITC-metabolizing/functioning genes, it is calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for recurrence and progression. The rs15561 in N-acetyltransferase 1 (NAT1) is alter the association between CV intake and progression risk. Multiple SNPs in nuclear factor E2-related factor 2 (NRF2) and nuclear factor kappa B (NFκB) are modify the associations between plasma ITC-albumin adduct level and progression risk (pint < 0.05). No significant association is observed with recurrence risk. Overall, >80% study participants are present with at least one protective genotype per gene, showing an average 65% reduction in progression risk with high dietary ITC exposure. CONCLUSION: Despite that genetic variations in ITC-metabolizing/functioning genes may modify the effect of dietary ITCs on NMIBC prognosis, dietary recommendation of CV consumption may help improve NMIBC survivorship.

13.
Curr Med Res Opin ; : 1-5, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38557333

RESUMO

OBJECTIVES: This study focused on the link between skin disorders and Methylenetetrahydrofolate reductase (MTHFR) polymorphisms. METHODS: Study cases were taken from a pre-conceptional care program where patients with poor obstetric history were evaluated in terms of systemic disorders including skin diseases. This retrospective cohort (n = 472) consisted of 110 (23.3%) and 362 (76.7%) women with or without skin disorders, respectively. For ease of analysis, the history of skin diseases was classified into seven categories: (1) acne/rosacea/other acneiform disorders; (2) fungal disease; (3) pruritis/xerosis; (4) psoriasis vulgaris; (5) acrochordons and other benign skin growths; (6) urticaria/dermatitis; and (7) viral diseases. RESULTS: In this retrospective cohort of 472 women, we explored the impact of MTHFR A1298C and C677T polymorphisms on skin disorders. Despite similar allelic frequencies, our findings revealed a statistically significant association between the presence of MTHFR polymorphisms and skin disorders (p = .027). Subgroup analysis indicated significantly higher rates of MTHFR polymorphisms in patients with psoriasis vulgaris (p = .033) and acrochordons (p = .030), highlighting their potential relevance in specific skin disorder subtypes. CONCLUSIONS: The increased prevalence of psoriasis and acrochordons among women with MTHFR deficiency underscores the complex relationship between genetic factors and dermatological health. Our findings emphasized the critical role of MTHFR polymorphisms not only in poor obstetric history but also as significant contributors to skin disorders. This dual association highlights the importance of comprehensive preconception counseling, especially customized for women affected by skin disorders.

14.
J Clin Med ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610733

RESUMO

Background: This study examines the impact of CYP3A4 and CYP 3A5 genotypes on tacrolimus (Tac) pharmacokinetics in Romanian kidney transplanted patients. Methods: We included 112 kidney recipients genotyped for CYP3A5*3, CYP3A4*1.001, and CYP3A4*22. Patients were categorized into poor, intermediate, rapid, and ultra-rapid metabolizers based on the functional defects linked to CYP3A variants. Results: Predominantly male (63.4%) with an average age of 40.58 years, the cohort exhibited a high prevalence of the CYP3A4*1/*1 (86.6%) and CYP3A5*3/*3 (77.7%) genotypes. CYP3A4*1.001 and CYP3A5*1 alleles significantly influenced the Tac concentration-to-dose (C0/D) ratio in various post-transplant periods, while the CYP3A4*22 allele showed no such effect (p = 0.016, p < 0.001). Stepwise regression highlighted the CYP3A4*1.001's impact in early post-transplant phases, with hematocrit and age also influencing Tac variability. Conclusions: The study indicates a complex interaction of CYP3A4 and CYP3A5 genotypes on Tac metabolism, suggesting the necessity for personalized medication approaches based on genetic profiling in kidney transplant recipients.

15.
J Clin Med ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610815

RESUMO

Background: Previous studies found high but very variable levels of tetranor-PGEM and PGDM (urine metabolites of prostaglandin (PG) E2 and PGD2, respectively) in persons with cystic fibrosis (pwCF). This study aims to assess the role of cyclooxygenase COX-1 and COX-2 genetic polymorphisms in PG production and of PG metabolites as potential markers of symptoms' severity and imaging findings. Methods: A total of 30 healthy subjects and 103 pwCF were included in this study. Clinical and radiological CF severity was evaluated using clinical scoring methods and chest computed tomography (CT), respectively. Urine metabolites were measured using liquid chromatography/tandem mass spectrometry. Variants in the COX-1 gene (PTGS1 639 C>A, PTGS1 762+14delA and COX-2 gene: PTGS2-899G>C (-765G>C) and PTGS2 (8473T>C) were also analyzed. Results: PGE-M and PGD-M urine concentrations were significantly higher in pwCF than in controls. There were also statistically significant differences between clinically mild and moderate disease and severe disease. Patients with bronchiectasis and/or air trapping had higher PGE-M levels than patients without these complications. The four polymorphisms did not associate with clinical severity, air trapping, bronchiectasis, or urinary PG levels. Conclusions: These results suggest that urinary PG level testing can be used as a biomarker of CF severity. COX genetic polymorphisms are not involved in the variability of PG production.

16.
Cancers (Basel) ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610928

RESUMO

Metastasis is a key determinant of cancer progression, influenced significantly by genetic mechanisms. RRP1B, primarily a nucleolar protein, emerges as a suppressor of metastasis, forming alliances with various cellular components and modulating gene expression. This study investigates the involvement of the ribosomal RNA processing 1 homolog B (RRP1B) gene in metastasis regulation in cervical cancer. Through a comprehensive analysis of 172 cervical cancer patients, we evaluated five RRP1B single nucleotide polymorphisms (SNPs) (rs2838342, rs7276633, rs2051407, rs9306160, and rs762400) for their associations with clinicopathological features and survival outcomes. Significant associations were observed between specific genetic variants and clinicopathological parameters. Notably, the A allele of rs2838342 was associated with reduced odds of advanced tumor size, worse prognosis, and, preliminarily, distant metastasis, while the T allele of rs7276633 correlated with a decreased risk of higher tumor size and worse prognosis. Additionally, the C allele of rs2051407 demonstrated protective effects against larger tumors, metastasis, and adverse prognosis. The rs9306160 C allele exhibited a protective effect against metastasis. The rs762400 G allele was significant for reduced tumor size and metastasis risk. Furthermore, the rs2838342 A allele, rs7276633 T allele, rs2051407 C allele, and rs762400 G allele were associated with improved overall survival, demonstrating their potential significance in predicting prognoses in cervical cancer. Linkage disequilibrium and haplotypes analysis enabled us to evaluate the collective effect of the analyzed SNPs, which was in line with the results of allelic models. Our findings underscore the clinical relevance of RRP1B SNPs as prognostic markers in cervical cancer, shedding light on the intricate interplay between genetic factors and disease-progression dynamics. This research provides critical insights for future investigations and underscores the importance of incorporating RRP1B SNP detection into prognostic-assessment tools for accurate prediction of disease outcomes in cervical cancer.

17.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612539

RESUMO

The most critical forms of coronavirus disease 2019 (COVID-19) are associated with excessive activation of the inflammasome. Despite the COVID-19 impact on public health, we still do not fully understand the mechanisms by which the inflammatory response influences disease prognosis. Accordingly, we aimed to elucidate the role of polymorphisms in the key genes of the formation and signaling of the inflammasome as biomarkers of COVID-19 severity. For this purpose, a large and well-defined cohort of 377 COVID-19 patients with mild (n = 72), moderate (n = 84), severe (n = 100), and critical (n = 121) infections were included. A total of 24 polymorphisms located in inflammasome-related genes (NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, IL18, NFKB1, ATG16L1, and MIF) were genotyped in all of the patients and in the 192 healthy controls (HCs) (who were without COVID-19 at the time of and before the study) by RT-qPCR. Our results showed that patients with mild, moderate, severe, and critical COVID-19 presented similar allelic and genotypic distribution in all the variants studied. No statistically significant differences in the haplotypic distribution of NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, and ATG16L1 were observed between COVID-19 patients, who were stratified by disease severity. Each stratified group of patients presented a similar genetic distribution to the HCs. In conclusion, our results suggest that the inflammasome polymorphisms studied are not associated with the worsening of COVID-19.


Assuntos
COVID-19 , Inflamassomos , Humanos , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , COVID-19/genética , Biomarcadores , Caspase 1/genética , Polimorfismo Genético , Proteínas de Neoplasias , Proteínas Adaptadoras de Sinalização CARD/genética
18.
Lipids Health Dis ; 23(1): 106, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616260

RESUMO

BACKGROUND: Dyslipidemia, a significant risk factor for atherosclerotic cardiovascular disease (ASCVD), is influenced by genetic variations, particularly those in the low-density lipoprotein receptor (LDLR) gene. This study aimed to elucidate the effects of LDLR polymorphisms on baseline serum lipid levels and the therapeutic efficacy of atorvastatin in an adult Han population in northern China with dyslipidemia. METHODS: In this study, 255 Han Chinese adults receiving atorvastatin therapy were examined and followed up. The 3' untranslated region (UTR) of the LDLR gene was sequenced to identify polymorphisms. The associations between gene polymorphisms and serum lipid levels, as well as changes in lipid levels after intervention, were evaluated using the Wilcoxon rank sum test, with a P < 0.05 indicating statistical significance. Assessment of linkage disequilibrium patterns and haplotype structures was conducted utilizing Haploview. RESULTS: Eleven distinct polymorphisms at LDLR 3' UTR were identified. Seven polymorphisms (rs1433099, rs14158, rs2738466, rs5742911, rs17249057, rs55971831, and rs568219285) were correlated with the baseline serum lipid levels (P < 0.05). In particular, four polymorphisms (rs14158, rs2738466, rs5742911, and rs17249057) were in strong linkage disequilibrium (r2 = 1), and patients with the AGGC haplotype had higher TC and LDL-C levels at baseline. Three polymorphisms (rs1433099, rs2738467, and rs7254521) were correlated with the therapeutic efficacy of atorvastatin (P < 0.05). Furthermore, carriers of the rs2738467 T allele demonstrated a significantly greater reduction in low-density lipoprotein cholesterol (LDL-C) levels post-atorvastatin treatment (P = 0.03), indicating a potentially crucial genetic influence on therapeutic outcomes. Two polymorphisms (rs751672818 and rs566918949) were neither correlated with the baseline serum lipid levels nor atorvastatin's efficacy. CONCLUSIONS: This research outlined the complex genetic architecture surrounding LDLR 3' UTR polymorphisms and their role in lipid metabolism and the response to atorvastatin treatment in adult Han Chinese patients with dyslipidemia, highlighting the importance of genetic profiling in enhancing tailored therapeutic strategies. Furthermore, this investigation advocates for the integration of genetic testing into the management of dyslipidemia, paving the way for customized therapeutic approaches that could significantly improve patient care. TRIAL REGISTRATION: This multicenter study was approved by the Ethics Committee of Xiangya Hospital Central South University (ethics number K22144). It was a general ethic. In addition, this study was approved by The First Hospital of Hebei Medical University (ethics number 20220418).


Assuntos
Dislipidemias , Polimorfismo Genético , Adulto , Humanos , Atorvastatina/uso terapêutico , Regiões 3' não Traduzidas/genética , LDL-Colesterol , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , China
19.
J Multidiscip Healthc ; 17: 1473-1482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605856

RESUMO

Background: The relationship between CDH23 gene variants and NIHL is unclear. This study investigates the association between cadherin 23 (CDH23) gene variants and noise-induced hearing loss (NIHL). Methods: This is a case-control study. Workers who were exposed to noise from a steel factory in North China were recruited and divided into two groups: the case group (both ears' high-frequency threshold average [BHFTA] ≥40dB) and the control group (BHFTA ≤25 dB). This study used the generalised multifactor dimensionality reduction method to analyse the association among 18 single-nucleotide polymorphisms (SNPs) in CDH23 and NIHL. Logistic regression was performed to investigate the main effects of SNPs and the interactions between cumulative noise exposure (CNE) and SNPs. Furthermore, CNE was adjusted for age, gender, smoking, drinking, physical exercise and hypertension. Results: This study recruited 1,117 participants. The results showed that for rs11592462, participants who carried the GG genotype showed an association with NIHL greater than that of those who carried the CC genotype. Accordingly, genetic variation in the CDH23 gene could play an essential role in determining individual susceptibility to NIHL. Conclusion: Genetic variations in the CDH23 gene may play an important role in determining individual susceptibility to NIHL. These results provide new insight into the pathogenesis and early prevention of NIHL.

20.
Front Immunol ; 15: 1341749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605942

RESUMO

Introduction: Autoimmune thyroid diseases (AITDs) are prevalent disorders, primarily encompassing Graves' disease (GD) and Hashimoto's thyroiditis (HT). Despite their common occurrence, the etiology of AITDs remains elusive. Th9 cells, a new subset of CD4+T cells with immunomodulatory properties, have been linked to the development of various autoimmune diseases. However, research on the role of Th9 cells in AITDs is limited. Methods: We investigated the expression of Th9 cells,their functional cytokine IL-9, and transcription factor IRF4 in peripheral blood mononuclear cells (PBMCs) and plasma of AITD patients and healthy controls. Additionally, we explored the genetic association between four loci polymorphisms (rs31564, rs2069879, rs1859430, and rs2069868) of the IL-9 gene and AITDs. Results: We reported, for the first time, that refractory GD patients exhibited elevated mRNA levels of IL-9 and IRF4 in PBMCs, increased IL-9 protein levels in plasma, and a higher proportion of Th9 cells in peripheral blood when compared to normal controls. Furthermore, human recombinant IL-9 protein was found to enhance IFN-g secretion in PBMCs from both GD patients and normal controls. At the genetic association level, after adjusting for age and sex, the rs2069879 polymorphism exhibited a significant association with AITDs under an additive model (P<0.001, OR= 0.05, 95% CI=0.03-0.08). Discussion: Our results reveal that Th9 cells may exert a pivotal role in the pathogenesis and progression of refractory GD and HT, and IL-9 holds promise as a novel therapeutic target for the management of AITDs.


Assuntos
Doença de Graves , Doença de Hashimoto , Humanos , Interleucina-9/genética , Leucócitos Mononucleares , Predisposição Genética para Doença , Doença de Graves/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...